An optimal approximation algorithm for Bayesian inference
نویسندگان
چکیده
منابع مشابه
An Optimal Approximation Algorithm for Bayesian Inference
Approximating the inference probability Pr X xjE e in any sense even for a single evidence node E is NP hard This result holds for belief networks that are allowed to contain extreme conditional probabilities that is conditional probabilities arbitrarily close to Nevertheless all previous approximation algorithms have failed to approximate e ciently many inferences even for belief networks with...
متن کاملAn Optimization Based Algorithm for Bayesian Inference
In the Bayesian statistical paradigm, uncertainty in the parameters of a physical system is characterized by a probability distribution. Information from observations is incorporated by updating this distribution from prior to posterior. Quantities of interest, such as credible regions, event probabilities, and other expectations can then be obtained from the posterior distribution. One major t...
متن کاملApproximation enhancement for stochastic Bayesian inference
Highlights • Orders-of-magnitude improvement in approximate Bayesian inference efficiency • Bitstream autocorrelation limits inference approximation accuracy • Autocorrelation successfully mitigated to improve Bayesian inference approximation • Approximate Bayesian inference efficiently performed in hardware 2 Abstract Advancements in autonomous robotic systems have been impeded by the lack of ...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملOptimal Polynomial-Time Estimators: A Bayesian Notion of Approximation Algorithm
The concept of an “approximation algorithm” is usually only applied to optimization problems, since in optimization problems the performance of the algorithm on any given input is a continuous parameter. We introduce a new concept of approximation applicable to decision problems and functions, inspired by Bayesian probability. From the perspective of a Bayesian reasoner with limited computation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 1997
ISSN: 0004-3702
DOI: 10.1016/s0004-3702(97)00013-1